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CARDINAL INTERPOLATING MULTIRESOLUTIONS ~
ROBERT MICHAEL LEWIS 1

Abstract. The basic method of constructing wavelets is by means of a multiresolution approxi-
mation of Lz(R). In this paper we present a class of multiresolution approximations for which the
associated scaling function has a simple cardinal interpolation property. We present the construction
of such multiresolutions and discuss the symmetry, decay, and regularity properties of the associated
scaling functions and wavelets.

Key Words. Wavelets, interpolation.

1. Introduction. Wavelets have recently received a great deal of attention in such
areas as signal processing, image processing, and the numerical computation of singular
integral operators. In its simplest form, a wavelet is a function 9 such that the family

Yin(z) =272z —k) G keZ

forms an orthonormal basis for L2(R). Examples of such 1) have been constructed for
which the 9, also form bases for such function spaces as the Sobolev spaces H*(R).
Moreover, wavelets naturally exhibit a marked degree of spatial and frequency localiza-
tion, which accounts for much of their utility.

A simple and elegant way both to construct wavelet bases and to compute the
wavelet expansion of a function is by means of a multiresolution approzimation ([1}, [6],
[8]). A multiresolution approximation M of L2(R) is a sequence (V;), j € Z of closed
subspaces of L2(R) such that

1. V,; C Vi,
2. U2_,, V; is dense in L(R) and N{2_,, V; =0,
3. f{z) €V = f(22) € Vyun,
4. f(z) € V; & f(z —277k) € V;, and
5. There exists a function g € V such that the family (g(z —k))sez forms a Riesz
basis for V.
Of paramount importance is the following consequence of condition (5):
5. There exists a function ¢ such that the family (¢(z —k))iez forms an orthonor-
mal basis for V.
The function ¢ is called the scaling function associated with the multiresolution. In
this notation the index j indicates scale while the index k indicates spatial location.
The scaling and translation properties (3) and (4) imply that the family

$in(z) = 27¢(2z — k)  j kel

forms an orthonormal basis for V;. From ¢ we construct the wavelet 1.

* Research sponsored by AFOSR-89-0363 and the State of Texas under contract 1059, the Texas
Geophysical Parallel Computation Project.
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Interpolating Multiresolutions 2

In this paper we will study multiresolution approximations of L2(R) for which the
associated scaling functions ® are continuous and have the following cardinal interpo-
lation property: For k € Z,

CRLUES s

We will call a multiresolution for which the scaling function @ is continuous and satisfies
this interpolation property a cardinal interpolating multiresolution. Such multiresolu-
tions are also discussed in [5].

The main result of this paper is the construction of examples of interpolating mul-
tiresolutions. We will give a simple condition which will allow us to construct examples
of cardinal interpolating multiresolutions and we will study some of their properties.
We will also show how to construct cardinal interpolating multiresolutions from other
multiresolutions. We will construct examples of cardinal interpolating multiresolutions
from the spline multiresolutions of Battle and Lemarie [4] and from the compactly
supported multiresolutions of Daubechies [2].

These constructions will produce families of cardinal interpolating multiresolutions
for which the scaling functions ® and wavelets ¥ are real-valued, exponentially decaying
functions which can be designed to have an arbitrarily high degree of smoothness and
an arbitrarily large number of vanishing moments. As we will discuss in Section 9,
such interpolating multiresolutions provide an attractive and natural way of computing
from sampled data the initial projection needed for Mallat’s cascade wavelet transform
algorithm [7].

We begin in Section 2 with a brief review of some properties of multiresolutions that
we will need. In Section 3 we present the condition which allows us to construct cardinal
interpolating multiresolutions. In Sections 4—7 we discuss some of the restrictions that
the interpolation property places on the multiresolution. In Section 8 we show how the
interpolation condition leads to some interesting relations involving the values of the
scaling function ® and the wavelet U. In Section 9 we discuss the vanishing moments
properties of interpolating multiresolutions.

The main results of this paper are contained in Sections 11 ~ 13. There we show how
an arbitrary multiresolution can be used to construct a cardinal interpolating multires-
olution and we investigate the properties of the cardinal interpolating multiresolutions
so constructed. In Sections 12 and 13 we present two families of cardinal interpolating
multiresolutions.

To prevent any confusion over normalization, the definition of the Fourier transform
we use in this paper is

fw)= [ da fla)en.

Its inverse is then

1 foo . :
fl@)= o= [ do flw)e=.
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For a generic multiresolution we will use the symbols ¢ and 1 for the associated scaling
function and wavelet. We will reserve ® and ¥ for the scaling function and wavelet
associated with a cardinal interpolating multiresolution.

2. Multiresolution approximations. In this section we will review those fea-
tures of multiresolution approzimations (or multiresolutions, for short) which we will
need. For a fuller discussion of this subject, we refer the reader to [1], [6], and [8].

Following A. Cohen ([1]), we will say that a multiresolution is regular if the scal-
ing function @(z) decays so quickly that (1 + |z|)"é(z) € L%(R) for all n > 0. If a
multiresolution is regular, then its properties are contained in what we will call the
scale-transition filter H(w). This is a function which describes how to pass between two
levels V; and V4, of the multiresolution.

Since ¢(£) € V_; C Vy, we have

o0

9(3)= 3 motz—b)

k=—o00

where

1 x
1) he =5 [da g (5) dla— k).
We define the scale-transition filter H(w) to be

Hw)= Y hye™;

k=—o00

then

~

(2) §(2w) = H(w)(w).

H(w) is C* because of the decay rate of ¢. Since (¢(z — k))rcz forms an orthonormal
family, H(w) satisfies

(3) H(0) =1,
(4) [H (@) + |H(w + )" = 1.
As a consequence of (2) we have the fundamental relation
(5) q;(w) = H H(2_kw).
k=1

From (3) and (5) we see that ¢ has unit mean:
(6) $(0) = 1.

In order to define the wavelet v, we first define the filter G(w) by
(7) G(w) = e H(w + ).

The wavelet v is then defined via

(8) Pw) =G (‘i) 3 (‘ﬁ) .
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3. The interpolation condition. We define an interpolating multiresolution to
be a regular multiresolution for which the scaling function ® is real-valued, continuous,
and satisfies

(9) ®(k) = 6(k).

We should remark that the structure of multiresolutions places a prior: restrictions on
the kinds of interpolation properties we might consider. One property of multiresolu-
tions is that the scaling function ® necessarily satisfies

i Oz — k)= 1.

k=--o00

(See [8].) In particular, we must have

S (k) =

k=—oc0

This property limits the interpolation condition we might hope to impose on the scaling
function. In view of this restriction the condition (9) is not only the simplest interpo-
lation property but the most natural for multiresolutions.

We will derive conditions on the scale-transition filter H(w) under which the associ-
ated scaling function ® has the interpolation property (9). We begin with the following
well-known formula [8]: Suppose f, f € L1, and let F(w) = Y22 ___ f(w + 2kx). Then
F € LY[0,2~] and

Z f(w+2k7r z f(k)e*.

k=—oc0 k=—o00

In the case of an interpolating multiresolution the preceding relation reduces to

[ o]

Z w+2k7r = 1.

Now suppose that H(w) is the scale-transition filter associated with the multiresolution.

A

Since ®(2w) = H(w)d(w),

i & (2w + 2k7) = f: H(w + km)®(w + kr) = 1.

k=—o00 k=—oc0

Now break up the sum over even and odd k. Since H is 27-periodic,

[e 0] o0

Z b(w + 2kT) + H(w + 7) Z w+7r+2k7r):H(w)+H(w+7r).

Thus H must satisfy the relation

(10) Hw)+ Hw+7) = 1.
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The condition (10) is sufficient to generate an interpolating multiresolution under
certain other assumptions on H(w). This is the import of the following theorem, which
is a simple elaboration on the sufficient conditions concerning the construction of a
multiresolution from a scale-transition filter H(w) in [1] and [6].

THEOREM 3.1. Suppose H(w) has the following properties:

(11) H(w) # 0 for allw € [-7/2,7/2],
(12) H(w) is C* and 2r-periodic,
(13) H(0) =1,

(14) H@) + |H(w+ ) = 1.
Define

d(w) = kﬁ H(27%w).

A. Then ® defines a regular multiresolution of L2(R). The function (i)(w) is the Fourier
transform of a function ®(x) such that (®(x—k))kez is an orthonormal basis for a closed

subspace Vo of L*(R), and (1 + |z]|)"®(z) € L2(R) for all n > 0.
B. If, in addition, ® is integrable and H(w) satisfies

Hw)+ Hw+m) =1,

then ® is continuous and defines a cardinal interpolating multiresolution.

We will need the following lemma for the proof of this theorem. This lemma is a
slightly generalized restatement of Lemma 2 in [6].

LEMMA 3.2. Suppose m(w) is a continuous 2w -periodic function satisfying

m(w) + m(w + 7) = 1.

For k > 1 define my(w) to be

_m(g)m(4)-m(%), if|w <2,
mi(w) = { 0, (2) (4) (2’°) i ol > 27
Then for all k > 1 we have

n — o nw __ 277—7 lf?’LZO,
I = /_oodwm’“(“’)e - { 0, ifn#0.
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Part A of Theorem 3.1 is contained in [1] and [6]. The proof of part B uses the
techniques from the proof of part A.

Proof. We must show that ®(k) = 6(k). Since ® € L, ® is continuous, and it
makes sense to speak of the pointwise values ®(k).

Define

8 {H@Vﬂﬂ~4ﬂ%%%wds%m
Oa if |w| > Qkﬂ',

Applying Lemma 3.2 we see that
/oo dw &4 (w)e™ = 27x8(n).

We now will apply the dominated convergence theorem to conclude the same about d.
The conditions (12), (13), and (11) imply there exists a lower bound ¢ > 0 such
that for all w € [—7, 7],

|®(w)| > e

(See [1] or [6] for a proof.) For |w| < 2*r we have

bw) = diuw)d (%),

so for |w| < 2Fr,

(15) |Bu(w)] <

e

b(w)|.

Since ék(w) = 0 for |w| > 2%x, (15) holds for all w. Since we assumed that & is
integrable, we may apply the dominated convergence theorem to conclude that

B(n) = —237; [ dob)en = o)

4. Restrictions on the real and imaginary parts of H. In this section we
will summarize the conditions we need to impose on the real and imaginary parts of
the filter H(w) in order to produce a cardinal interpolating multiresolution. These
conditions will be used in Section 11, where we will present a large class of cardinal
interpolating multiresolutions.

The filter H(w) must satisfy the two conditions

(16) Hw)+ Hw+7)=1

(17) [Hw)[* + [H(w +7)* = 1.
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These yield |H(w)|* — Re H(w) = 0, or

1

(18) ‘H(w) -3l= %

Let H(w) = a{w) 4+ 7 b(w). Then (18) leads to the relation
(19) () = alw) — a*().
In addition, in order to satisfy (16), a(w) and b(w) must also satisfy
(20) aw)+alw+r) =
(21) bw) +bw+7m) = 0.
Finally, if ® is real, then H(w) = H(—w), so a and b must satisfy

(22) a(w) = a(—w)
(23) bw) = —b(—w).

Conversely, it is easy to see from the definition of ¢ that if a and b satisfy the two
preceding relations then @ will be real.

5. Missing Fourier coefficients. The scale-transition filter H(w) associated with
a cardinal interpolating multiresolution has the following curious property: All but one
of the “even” Fourier coefficients of H(w) vanish. If H(w) = %2 __ hre™, then

Z hkeikw + E hkeik(w-}-w) — Z 2h2kei2kw - 1.

k=—o00 k=—c0 k=—0o0

Thus

([ 1/2, ifk=0,
(24) hai = { 0, ifk£0.

In view of (1), this can be interpreted in terms of orthogonality relations between ¢(z/2)

and the family (é(z — k))rez.

6. Asymmetry of ®. The scaling functions associated with cardinal interpolating
multiresolutions have an annoying lack of symmetry. In fact, the interpolating scaling
function @ cannot be symmetric with respect to the origin. Suppose that ®(z) is
symmetric with respect to the origin. Then the Fourier coefficients h; of H(w) are
symmetric in k: hy = h_i. Accordingly, H(w) = 32 ___ hie* is purely real, so

(Im H(w))? = a(w) — a*(w) = 0.

Since a(w) is continuous we must have either « = 0 or @ = 1. Since H(0) = 1, it follows
that a(w) = 1, which contradicts the condition a(w) + a(w + 7) = 1.
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7. Non-existence of compactly supported interpolating multiresolutions.
The condition (18) restricts the values of H(w) to lie on the circle {¢ € C: l ' =1},
As a consequence, the only compactly supported multiresolution with the 1nterpolat10n
property ®(k) = 6(k) corresponds to the Haar basis, for which the scaling function is
not continuous.

To prove this, we first note the following fact: If p(¢) is a polynomial and |p(¢)| = 1
for all [{} = 1, then p({) = (™ for some n > 0 and |c| = 1 (see, for instance, 65,
Part VI, of [9]). Now suppose that H(w) has a finite Fourier expansion, as required
by Daubechies’ characterization of the scale-transition filters associated with compactly
supported multiresolutions [2]. Then H(w) = p(e™) for some polynomial p, and from
(3), (18), the aforementioned fact about polynomials, and (24), we see that

for some odd n. The only such choice of n that leads to a multiresolution is
1 1.
H(w) ==+ —e*

which generates the Haar basis (see [1]).

8. Values of & and ¥ at dyadic points. For cardinal interpolating multires-
olutions there exist simple identities for the values of ®(k277) and W(k277) for any
kel

Since ®(2w) = H(w)®(w), for j > 1 we have

®(Pw) = H(Z'w)d (2 w) [HHQk } w).

Let ®;(z) = ®(277z). For j > 1 we have

A

d(w) = VP(Pw) =2 !ﬁ H(zkw)] $(w).

Since H is 27-periodic,

o0

> ®;(w + 2kr) = 2 l:ﬁ H(ka)] i &(w + 2k).

k=0 k=—oc

Because ® is associated with a cardinal interpolating multiresolution, this expres-
sion reduces to a particularly simple form. Since ® satisfies (9), we have

j—1
Z@sz = Zd) r) =2 [[ H(2*w)

k=-00 k=—00 k=0
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From this relation the values ®(k277) can be computed in terms of the Fourier coeffi-
cients of a finite product. This identity has another interpretation. The substitution
w — k279w yields

(25) 277 Z (k2772w = HH2 w)

k=—00

On the left-hand side we have a rectangular rule approximation to ®(w), while on the
other side we have a truncated product approximation to ®(w).
Similarly, from (8) one obtains the identity

ad . o 1-2
> W(k27)et = 20G(27 ) T H(2%w), j>2
k=—o00 k=0

for the associated wavelet W, from which one can compute the values ¥(k277) and
derive a formula similar to (25).

9. Vanishing moments. In Sections 12 and 13 we will show how to construct
cardinal interpolating multiresolutions for which the scaling functions ® can have ar-
bitrarily high numbers of vanishing moments. In this section we relate the property of
vanishing moments to the scale-transition filter H(w).

For an arbitrary multiresolution the number of vanishing moments of the scaling
function ¢ and the wavelet 1 is related to the flatness of the scale-transition filter H(w)
at w = 0. First note that if H{w) € C*, then qg(w) € C*® and g@(w) € C*. Moreover,
from (2) and (8) we see that

d*H d*

(26) W(0)=0f0r1§k§N = qu()—-Oforlgng,and
w
IcH k

(27) —flwk(W)=0for0Sk§N~1 — jl/:()—-OforOSkSN—l.
W

Recall also that H((2k + 1)7) = 0 for all k£ € Z because of (3) and (4), so we can write
H(w) in the form

H(w) = cos™ ; m(w),
for some N € Z and some function m(w).

In the case of a cardinal interpolating multiresolution, H(w) also satisfies the in-
terpolation condition (16):

Hw)+ Hw+ ) = 1.

Consequently, for N > 1 we have

d*H dH
(28) W(O)—0f011<k<N4:>dwk()zOforlSkSN.
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This leads to the following proposition.
PROPOSITION 9.1. Suppose that H(w) is the scale-transition filter for a regular
cardinal interpolating multiresolution I and suppose that

H(w) = cos™ = 5 m{w),

where m(w) € C*.
Then

/dwmkfb(:c)zo forl<k<N-1

/dka\P(m):O for0<Ek<N-1.

Proof. The moment integrals make sense because of the rapid decay of ® and V.
The presence of the factor cos™(w/2) means that

d*H
dw*

The proposition now follows from (26), (27) and (28). O

One useful consequence of the vanishing moments of ® is the following error esti-
mate. Suppose that f € LZ(R) N CV(R) and that f(™)(z) is bounded, and that we
have a cardinal interpolating multiresolution for which the scaling function ® is expo-
nentially decaying and has at least NV —1 vanishing moments in the sense of Proposition
9.1. Given Az > 0, rescale ® by defining

(r)=0for0 <k<N-—1.

T

Pas(a) = (Aa)Fe ().

Z

The family ®.(z —kAz), k € Z, is an orthonormal basis for a subspace V5 of LZ(R);
this family of functions can be used to define a multiresolution of L2 where translation
by k is replaced by translation by kAz.

Now compute the coefficients di of the projection of f into V&<, the subspace
spanned by the ®a,(x — kAz), k € Z. Because of the vanishing moment properties of
&, we have

dy = /da: F(2)®as(z — kAz)

:/dm[ kAx+Zf

- /d:c [f(kAz) + RUV)(:C)] ®au(z — kAz).

(kAsc)

(2 — kAz)" + R™M(2)| ®pq(z — kAZ)

Recall from (6) that the scaling function ® has unit mean. Thus

/ do [(kAz)®a(z — kAZ) = (A2)} f(kAg).
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Meanwhile, for the remainder term R we obtain

‘/d:c R™)(2)®,(z — kAz)

<K /d:c |®as(z — kAZ)| |z — kAz|Y

Since @ is assumed to be exponentially decaying, say, |®(z)| < Ce~¢ll, it follows that

1

< K'(Az)N2.

/ dz B (2)®a4(z — kAz)

Comparing the interpolating approximation of f in V§<,

i (Az)? f(kAZ)®a,(z — kAT),

k=—oc

and the exact projection of f into the subspace V5,

f(z) =~ Z dkPa.(z — kAz),
k=—o00
we see that the first approximation interpolates the values f(kAz), while the error in
each coeflicient is bounded by

|(Az)7 f(kDAz) — di| = O((A2)N~H).

Because of this estimate, interpolating multiresolutions provide an arguably natural
way of computing from sampled data the initial projection needed for Mallat’s cascade
wavelet transform algorithm [7]. We can interpolate the sampled values while deviating
from the exact projection with a controllable error.

10. A technical lemma. In this section we prove a lemma which we shall use to
prove exponential decay for the multiresolutions we construct.

LEMMA 10.1. Suppose that forw € R, 8(w) is 2x-periodic, real-analytic, |6(0)| = 1,
and |0(w)] > b> 0.

Then ©(¢) = [132, 0(27%¢) is analytic on some strip I' = {( € C: |Im (| < r}
containing the real azis, and there exists a constant A such that for all w + in € T,
[O(w +1n)| < A |O(w)].

Proof. Since 0(w) is real-analytic and 2x-periodic, §(¢) is analytic on some strip
D={(e€C:|Im(| < R} Because |§(0)| =1, if K CC Q is compact, then we can
find Cx > 0 such that for all ( € K,

o*O| <14 Cx 2™

This insures that the infinite product defining ©(¢) converges uniformly on compact
subsets of (1, so © is analytic on ().
To establish the bound on ©((), we first define for w € R
0'(w)

)= Gy

Aw) = 3 2kA2 kw).
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Since §(w) is 2m-periodic, 6'(w) is bounded and the sum defining A(w) is uniformly
convergent.

Since A(w) is 27-periodic, we may write A(w) = 32 _. Ae™. Because of the
analyticity of 0, A({) is analytic on €, so for some a € (0,1) and 3 > 1, independent of
k, we have the bound

IAe] < Bealkl,

With these definitions,
- (g 2—“;'((22—__;‘3) T16(2-w) = A(w)O(w).
By Leibniz’ rule, for n > 1 we have
O () = 3 ( " ) AB ()O"1R) ().

We will now bound ©(w). We claim that for some constant v > 0, independent of w,

(29) 0)(w)| fn'am O(w)].
First note that
M) = 32 (k)" ae| < S Bl e,
k=—00 k=—co

From the identity

'

/ n_—ar TL!
I e =
0 an+1

and Stirling’s formula we can derive the estimate

A <925

for some v > 1 which is independent of n. Consequently,

A = |2

The proof of (29) now proceeds by induction. To begin, observe that

m A (27,

| |
n. n.
S Z an+1 S 7an+1'

0(w)] = IA@)10()] < 5 10w)].

Now suppose that for £ =0,...,n — 1,

0®(w)| < K ZH 10(w)] .
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Then
n—1 _
o) < & ("3 ) s fjeroe)
k=0
n—1 -1-k
(n—=1) Akl 4" 17 (n—1—k)!
<
- g:% kl(n — 1 — k)! ekt ank 16(w)]
n—1 n n
g _ v
S k;()(n - ]‘)!an+1 l@(w” - n!an+1 l@(w)|’
which establishes (29).
Then for any w € R,
= 0™ (w Ao (& .
(o) = [ S -y < (£ T le-u) ot
n=0 : n=0

If |( —w| < a/, then the latter infinite sum is convergent and bounded independently
of w. Thus there exists a strip I' = {( € C: [Im (| < r} containing the real axis and
A such that

|O(w + )] < A |O(w)]
forallw+ipel. O

11. A method to construct interpolating multiresolutions. In this section
we give a method of constructing an interpolating multiresolution I given another mul-
tiresolution M. Recall from Section 4 that for an interpolating multiresolution I the
filter Hy(w) = a(w) + tb(w) is determined once we define its real part a{w). The real
part a(w) must satisfy

a(w) +alw+7) =1

Happily, examples of such functions a(w) are associated with any multiresolution M.
Suppose that Hy(w) is the associated scale-transition filter; then

|Hw(w)l® + [Hpv(w + 7)|* = 1.

Thus we might take as a candidate for a(w) the function | Hng(w)|’.
Such a choice of a(w) has the following attractive feature. Suppose that ¢ is the
scaling function associated with the multiresolution M. Then from (18) we see that

(30) |Hi(w)| = a?(w) = [Hm(w)] .

Consequently,

|®(w)| = E |1 (274w)| = ,ﬁ |Hm(27F0)] = |8(w).
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The scaling function of the interpolating multiresolution I is as smooth as the scaling
function of the multiresolution M used to construct it, at least as measured by the
decay of the Fourier transform.

In the same sense, the wavelet of the interpolating multiresolution I is as smooth
as the wavelet of the multiresolution M used to construct it. The wavelets are defined
by (8) in terms of the filters

Gm(w) = e “Hyp(w+ )
Giw) = e “Hi(w+ 7).

From (30) we see that |G1{w)| = |[Gm(w)], so

o =[en ()0 5)| - o (5) ¢ 5) = ol

As we shall see, interpolating multiresolutions so constructed inherit most of the
properties of the multiresolution used to construct them. This gives us tremendous
latitude in the design of interpolating multiresolutions. We will present two classes of
interpolating multiresolutions, one based on the spline multiresolutions of Lemarie and
Battle and one based on the compactly supported multiresolutions of Daubechies. In
both cases the resulting scaling function ¢ and wavelet ¥ are exponentially decaying
and have the same smoothness as the multiresolutions used in their construction.

There is one restriction that arises in the construction of an interpolating mul-
tiresolution from an arbitrary multiresolution. This restriction arises in order to assure
sufficient smoothness of Hy(w). We want Hi(w) to be C*® in order that the associ-
ated scaling function and wavelet are rapidly decaying as in the definition of a regular
multiresolution in Section 2. In the examples we will present, Hyf(w) has the form

(@) = cos®™ 2 fm()f

where |m(w)|® is an even, 27-periodic function and |m(w)}* > 0 for all w € R. Now
construct a(w) as described above:

w 2
5 Im(w)]”.

P4

a(w) = [Hym(w)[* = cos®™

From (19) and (21) we have

W (w) = a(w) (1 — a(w)) = a(w)a(w + 7) = cos® ; sin2V ;—J Im(w)|* Im(w + 7)|%.

We want to define b(w) so that it is continuous and satisfies b(w) + b(w + 7) = 0.
Accordingly, we must define b(w) to be

b(w) = { sin™ (w/2) cos™ (w/2) [m(w)| Im(w + 7)|, N odd
o(w)sin™(w/2) cos™ (w/2) |m(w)| |m(w + )|, N even,
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where o(w) is the 27r-periodic function

o(w) = 1, 0 fw<m,
"] -1, 7 <w< 27,

If N is even, then H(w) cannot be C®. This limits the decay of the associated scaling
function ® and the wavelet ¥; we cannot expect ® and ¥ to have more than polynomial
decay. For this reason we will limit our attention in the remainder of this paper to the
case where IV is odd. The constructions we present can be carried out in the case where
N is even, however, yielding multiresolutions that are not regular in the sense of Section
2. Numerical calculations indicate that the difference in the asymptotic rate of decay
between the cases N even and NV odd is not really noticeable.

THEOREM 11.1. Suppose that ¢(z) is an real-valued, exponentially decaying scaling
function such that (1 + |w|)1+"q§ € L°(R) for some o > 0, and the associated scale-
transition filter has the form Hy(w) = cos™(w/2)m(w), where N is odd, m(w) is
2 -periodic, |m(w)| # 0 and |m(w)| is even.

Then

(31) Hy(w) = Im(w) (cosN % |m(w)| + i sin™ % |m(w + 7r)|> Hy(w) = 0(w)Hm(w)

defines a regular multiresolution with scaling function ® and wavelet ¥ with the following
properties:

1. Reality: ® and ¥ are real-valued.

2. Smoothness: ® and ¥ are as smooth as ¢ and ¢ in the sense that for w € R.

bw)| = |b(w)
Fw)| = [dw)].

If m is an integer for which 0 < m < a, then ® and ¥ are C™ functions.
3. Interpolation: ® is continuous, and ®(k) = 6(k).

4. Exponential decay: ® and ¥ are exponentially decaying. If m is an integer for
which 0 < m < «a, then for some C > 0 and € > 0,

@), @' ()], |8 (2)

T @) @) [B ()| < Ceet,
5. Vanishing moments: ® and U have vanishing moments:
/dmkcb(x) =0 forl<k<N-1
/da::cklll(x)zo for0<k<N-—1.

Proof. First we must check that Hi(w) defines a multiresolution.
i. Hi(w) is 2n-periodic and C* because of the hypotheses on m(w).
ii. Since Hm(0) =1, m(0) =1, so Hy(0) = 1.
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i1i. Note that
B = cos™ = m(w)]” +sin® = fm(w + )
= |Hm()" + [Hm(w + 7)|" = 1.
Thus
|Hi(w) [ + |Hy(w + )] = [Hv (@) + [Hyv(w + 7)[* = 1.

iv. Since |Hi{w)| = |cosN %| |m(w)]|, we see that |Hy(w)| # 0 for w € [—7/2,72].
Theorem 3.1 then tells us that Hy(w) defines a multiresolution.

Now we proceed to the proof of points 1—4.

1. To prove that ® and W are real, it suffices to show that Hj(w) = Hy(—w). Since
¢ is real-valued, it follows that Hyj(w) = Hm(—w), whence m(w) = m(—w). Then

Hyi(~w) = lnmlE:_il (cosN % fm(—w)| —isin® %J |m(—w + 7r)|> Hy(—w).
By hypothesis, |m(w)| is even and 2x-periodic; hence |m(—w + 7)| = |[m(w + 7)|. Thus
Hi(—w) = Hy(w).

2. We have shown that |Hi(w)| = |Hm(w)|, so part 2 immediately follows.

3. Since ¢ € L, part 2 tells us that ® € L, so ® is continuous. To establish the
interpolation identity ®(k) = 6(k) we need to check that Hy(w) + Hy(w + 7) = 1. We
have

Hy(w) + Hy(w + 7) = cos*" % |m(w)|* + 4 sin %cosN % |m(w)| |m(w + =)
+ sin®?V g |m(w + 7)|* — isin™ %J cos™ % |m(w)| |m(w + )|

= |Hm(w)|* + |Hm(w + 7)* = 1.

4. We will use the following facts to prove the exponential decay (see [3]).

a. If Ju(z)] < Ce~*l, then there exists a strip in C containing the real axis on
which 4(() is analytic.

b. If 4(¢) is analytic on some strip I' in C containing the real axis and if 4(¢)

l

O™, 8 > 0 as ¢ - o0, ¢ €T, then for some C and ¢ > 0, |u(z)| <
Ce=cll,
We have
£ 1 —k 2N [ o-kW —k W\ avw (1 —k -k
®(w) = [T 0(27*w) cos (2 ——) m(27 w) = (——) sin? = [ J[[ 02 *w)m(27*w) | .
k=1 2 2 2 k=1

Because ¢ is assumed to be exponentially decaying, (w) and m(w) are real-analytic.
Lemma 10.1 then tells us that ©(¢) = 152, 0(27%¢)m(27%¢) is analytic in some strip
I'={¢ € C: |Im (| <r}, and there exists A such that

I 002 ¢ym(2*¢)

k=1

O(w+in)| < A

= Af[l m(27%¢)|.
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Meanwhile, there exists B such that for all ( =w +ip €T, |w| > 1,

-N
C : 2N C ("‘))_N . oN W
(2 sin 5 > sin 5 .

Consequently, for all { = w +in €T, |w| > 1,

-N
((ﬁ> sin?N d
2 2

Thus we conclude that @(C) is analytic on the strip I' containing the real axis and
@(() = O(ICI_(HQ)) as ( — 0o, so ® is an exponentially decaying function.

The decay of @', ..., 8™ consists of noting that for 0 < k < m, (kCI)(C) is analytic
on I' and is O(|C|_(l+ﬁ)), B >0,as ( — oo for ( € I'. The proof of the exponential
decay of ¥, ¥ ... W™ follows the same lines.

5. This is simply proposition 9.1. 0O

<B

|6(¢)| < AB

]f[ m(27"w)| = AB|d(w)].

From formula (31) we can discern something of the relation between the original
scaling function ¢ and the interpolating scaling function @ constructed from ¢. We
have

i) = ([T 0240)) (.

Writing 0(w) = 52 _ 0ke'™, we see that §(277w) is the Fourier transform of the
distribution

(32) 0;(z) = f: 0r 6(z — k275).

k=—o00

Thus ® is derived from ¢ via an iterated convolution:

o(z) = ((*32,0;) * ¢) (2),

which in view of (32) corresponds to an iterated averaging of pointwise function values.
This will tend to have a smoothing effect.

12. The interpolating multiresolutions associated with the spline mul-
tiresolutions. In this section we will construct interpolating multiresolutions from the
spline multiresolutions of Lemarie and Battle. The spline multiresolution of order m
has the following properties (see [4]):

1. The scaling function ¢ and the wavelet 1) are both C™=? splines. On each
interval [k, k + 1], k € Z, ¢ is a polynomial of degree m — 1, while on each
interval [k/2,(k + 1)/2], k € Z, v is a polynomial of degree m — 1.

2. Both ¢ and v are exponentially decaying. There exist C > 0 and € > 0 such
that

|6(z)], |¢,(IE)] ey ‘qﬁ(m_n(x)‘ < Ce~clel
(@), [ ()] - [ ()| < el
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Let H,, denote the scale-transition filter associated with the Lemarie-Battle spline
multiresolution of order m. It has the form

ng(w)
H,(w) = | 0—=———,
(@) =\ 52733, (20)
where
1 drm=? 1 P (cos® £)
Yom(w) = = 22
2m () (2m — 1)! dw?™~2 4 5in’® ¥ sin®™ ¥

P,, is a polynomial of degree m and P, (cos* ) > 0 for all w € R. The scaling function
¢ and the wavelet v associated with the spline multiresolution of order m are given by

~ 1

pw) = W (Bam(w))?
P(w) = ei%Hm(w+7r)<1A5(

w
3

For odd m we can construct an interpolating multiresolution using the method
described in Section 11. Set

om W Pm(cos® %)
2 Pp(cos?w)’
w . w\J P (cos? £) Py (sin® £)

b = m padl
(w) cos™ — sin P (cos? o)

2 2

a(w) = |Hp(w)]* = cos®™

Then Hj(w) = a(w) + ib(w) defines an interpolating multiresolution which inherits
the smoothness, decay, and vanishing moment properties of the spline multiresolution.
Applying Theorem 11.1, we obtain the following.

PROPOSITION 12.1. Suppose Hj(w) is defined as above. Then Hy(w) defines a
regular multiresolution for which the scaling function ¢ and wavelet ¥ have the following
properties.

1. The scaling function ® and the wavelet ¥ are both real-valued, C™? functions.

2. @ is continuous and ®(k) = 6(k).

3. Both ® and ¥ are exponentially decaying. There exist C' > 0 and €' > 0 such
that

AN

()], [@'(2)],..., [o7 (@) < Ol
()], W (@), ..., |2 ()| < Clem W

4. Both ® and ¥ have vanishing moments:
/dwa:k(I)(x) = 0 fork=1,...,m—1, and

/dmavklll(:c) = 0 fork=0,...,m—1.
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The scaling function ¢,,(z) of the spline multiresolution of order m approximates
a lowpass filter for the frequency interval [—, 7], which is the Nyquist frequency asso-
ciated with the sampling interval Az = 1. In fact, as m — oo, b (w) — X[=r,n)(w), the
characteristic function for [, 7] (see [4]). (Of course, the penalty for such spectral
localization is that as m — oo, the function @(z) is less localized in space.)

The interpolating scaling function ®,, has the property that |<i)m(w)‘ = lém (w)l, SO
it, too, has most of its frequency content concentrated in the interval [—7, 7). This may
make ®,, an interesting interpolant for sampled functions, where there is an underlying
assumption that the data is band-limited.

Figures 1 and 2 show plots of ® and U for the case m = 3.

13. The interpolating multiresolutions associated with the compactly
supported multiresolutions. We can also build interpolating multiresolutions from
the multiresolutions of Daubechies [2], for which the associated scaling function ¢ and
wavelet ) are compactly supported. The Daubechies multiresolution of order N has
the following properties:

1. ¢ and @ are compactly supported.
2. ¢ and 1) are smooth, in the sense that there exists any > 0 such that

(1 o)+ [4] and (1 + ) +ov || € T

The scale-transition filter Hy(w) for the Daubechies multiresolution of order N has
the form

where () is a polynomial such that
in2 AL N=14k\ . pw . aN W 1
‘Q(e )’ = ;‘?::B ( L )sm 5+ [sm a]R(icosw),

and R is a member of a restricted class of odd polynomials. For our construction we
will choose the simplest possibility, R = 0.
For odd N we start with Hy(w) to define an interpolating multiresolution. Define

9

a(w) = [y ()’ = cos™ 2] Q(e)]

b(w) = cos™ g—sinN g— ‘Q(ei“’)‘ lQ(ei(w+”))‘ .

Now we can now appeal to Theorem 11.1 to define an interpolating multiresolution from
Hy(w) = a(w) + tb(w).
PROPOSITION 13.1. Suppose Hy(w) is defined as above. Then Hy(w) defines a

regular multiresolution for which the scaling function ® and wavelet ¥ have the following
properties.
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1. If an is the exponent in Property 2 of the compactly supported multiresolution,
then

(1+ |+ |$] and (14 |w])' ¥ |¥] € L.

2. ® is continuous and (k) = §(k).
3. ® and ¥ both have vanishing moments:

/dmack@(m) = 0fork=1,...,N—1, and
/d:z::z:klll(a:) = 0 fork=0,...,N—-1.

4. If m is an integer for which 0 < m < ay, then ® and ¥ are both C™. Moreover,
®, U and their derivatives are all exponentially decaying. There exist C > 0
and € > 0 such that

|® ()], |®'(2)],-- -, I‘D(m)(a:)‘ < Qe
()], ()], |0 ()| < Ceell.

Plots of ® and W for the case N = 3 are given in Figures 3 and 4. To the naked
eye, these appear to be a little smoother than the plots of ¢ and % for the compactly
supported multiresolution of order 3 given in [2]. This is what we might expect in view
of the averaging effect discussed at the end of Section 11.
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Figure 1: Interpolating scaling function
built from spline multiresolution, m =3

PN

RN

/\VA

8 10 12
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from spline multiresolution, m = 3
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Figure 4: Associated wavelet built from
Daubechies multiresolution, N = 3





